Formal synthesis of Cladospolide C \& epi-Cladospolide C using R -$(+)-\gamma$-valerolactone as a chiral synthon ${ }^{\star}$

Rajender Datrika ${ }^{\text {a, b, * }}$, Srinivasa Reddy Kallam ${ }^{\text {a }}$, Siddaiah Vidavalur ${ }^{\text {b }}$, Nagaraju Rajana ${ }^{\text {a }}$, Pratap T.V. ${ }^{\text {a, ** }}$
${ }^{\text {a }}$ Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd, Hyderabad 500 049, Telangana, India
${ }^{\text {b }}$ Department of Organic Chemistry \& FDW, Andhra University, Visakhapatnam 530 003, Andhra Pradesh, India

A R T I C L E I N F O

Article history:

Received 5 February 2019
Received in revised form
28 March 2019
Accepted 1 April 2019
Available online 2 April 2019

Keywords:

Cladospolide
Gamma valerolactone
Wittig reaction
Yamaguchi lactonization

Abstract

The formal synthesis of Cladospolide-C and its analog is achieved by using enantiopure $(R)-\gamma$ -valerolactone 10. The significant points of this synthesis are the stereoselective dihydroxylation of α, β unsaturated ester 16 using Sharpless protocol, Wittig olefination of γ-valerolactol $\mathbf{6}$ with triphenylphosphonium iodide salt 7, one pot selective oxidation of $\mathbf{2 2}$ and subsequent C2-homologation with good E / Z ratio.

© 2019 Published by Elsevier Ltd.

1. Introduction

Cladospolides A-D and iso-Cladospolide B comprise a family of fungal secondary metabolites isolated from the fermented broth of cultures that were obtained from either marine or soil fungi $[1-4]$. Among these, cladospolides A (1) and B (2) were first isolated from the culture filtrate of the fungus Cladosporium cladosporiolides FI113 by Isogai and co-workers [1]. In 1995, Fukada et al., isolated cladospolide C (4) along with cladospolides A and B from Cladosporium tenuissium [2]. Later in 2000, Ireland and co-workers isolated $\mathbf{2}$ from Cladosporium herbarum together with iso-cladospolide B (3) from the fungal strain I96S215 [3]. Cladospolide D (5) was isolated in 2001 from the fermentation broth of Cladosporium sp . FT0012 [4a]. Structurally, cladospolides A-C are γ, δ-dihydroxy- α, β-unsaturated 12-membered macrolides, whereas Cladospolide D (5) is a δ-hydroxy- γ-Oxo- α, β-unsaturated 12 -membered lactone (Fig. 1).

Furthermore, Cladospolides A and C possess an (E)-olefin

[^0]geometry, whereas Cladospolides B and D have a (Z)-olefin geometry. In contrast to Cladospolides $\mathrm{A}-\mathrm{D}$, iso-Cladospolide $\mathrm{B}(\mathbf{3})$ is a butenolide that is γ-substituted by an aliphatic group. Although the Cladospolides are fungal metabolites, they are plant-growth regulators. For example, Cladospolides A-C inhibit the shoot elongation of rice seedlings [4b].

The biological properties of Cladospolide C(4) suggest that it is a gibberellin synthesis inhibitor. Unlike the other members, Cladospolide $\mathrm{D}(\mathbf{5})$ shows antimicrobial activity against Mucor recemosus and Pyricularia oryzae. Given their fascinating structural diversities and biological profiles, the Cladospolide family members have generated considerable interest in the synthetic community. Accordingly, various strategies have been developed that utilize diverse key reactions [5-9].The absolute and relative stereochemistry for the Cladospolides A, B, and C have been confirmed by several total syntheses from known chiral starting materials [5-9]. For instance, Cladospolides A-C have been prepared by Banwell from 1-hepten-2-ol and cis-2, 3-dihydroxychlorobenzene which can be prepared in optically pure form via enzymatic resolution and biotransformation [10], whereas others have followed chiron approach using carbohydrate sources [11]. Synthesis of Cladospolide A was reported by Mori and Maemoto in 1987 [12]. Despite their rather intriguing biological profiles, the Cladospolides have only received limited attention as synthetic targets.

In continuation of our pursuit of synthesizing structurally

Fig. 1. Structures of Cladospolides A-D and iso-Cladospolide B.
complex molecules beginning with optically pure γ-Valerolactone, herein we report the formal synthesis of Cladospolide C(4) from γ Lactone.
γ-Lactone is very good chiral synthon in the synthesis of natural products [13]. A variety of methods are in practice for the synthesis of optically pure γ-lactones. Though a number of reports available in the literature for the synthesis of optically pure γ-Valerolactone (10) [14], we chose to prepare the latter from d-alanine (11) via D Lactic acid (12) [15].

2. Retrosynthetic approach

The retrosynthetic approach for synthesis of Cladospolide C (4)

Scheme 1. Retrosynthetic approach for Cladospolide C (4) via Wittig olefination.
is described in Scheme 1. Accordingly Cladospolide C (4) can be achieved by Yamaguchi lactonization of the α, β-unsaturated secoacid 9 . The seco-acid $\mathbf{9}$ is obtained by selective oxidation, a two carbon homologation using Wittig ylide and saponification of the ester. The seco acid 9is traced to intermediate diol 8 which is formed as a result of hydrogenation of the double bond that formed via Wittig reaction of corresponding triphenylphosphonium salt (7) and lactol (6). Compound 6 can be traced from $R-(+)-\gamma$-Valerolactone (10) further compound $\mathbf{7}$ can be traced from commercial available 1, 3 -propanediol (17).

The retrosynthetic approach for the synthesis of Wittig salt 7 from 1, 3-propanediol (17) is described in the Scheme 2. The Wittig salt (7) was obtained by phosphorylation of Iodo alcohol 13. The intermediate iodo alcohol 13 was obtained from hydroxy ester 14 via halogenation under Appel condition followed by NaBH_{4} reduction. The hydroxy ester 14 can be traced from α, β-unsaturated ester 16 by means of Asymmetric Sharpless dihydroxylation. The α, β-unsaturated ester 16 can be traced from 1,3-propanediol (17) by selective mono TBDMS protection followed by C2-homologation.

3. Results and discussion

The synthesis began with reduction of $R-\gamma$-Valerolactone (10) to corresponding $R-\gamma$-Valerolactol (6) and this key intermediate was used in synthesis of cladospolides as shown in Scheme 3. The synthesis of $R-\gamma$-Valerolactone (10) was described in literature [15].

3.1. Reagents and conditions

a) $\mathrm{NaNO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4} ; 2 \mathrm{~h}, 58 \%$; b) (i) $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$, rt, 24 h ; (ii) TBDMSCl/Imidazole, DCM, $25-35^{\circ} \mathrm{C}, 12 \mathrm{~h}, 95 \%$; (iii) DiBAL-H, DCM, $-70 \pm 5^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iv) C2- Wittig (21), 72%; (v) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, Ethyl acetate $40 \mathrm{Psi}, 4 \mathrm{~h}, 95 \%$ d) $p \mathrm{TSA}, \mathrm{MeOH}, 25-35^{\circ} \mathrm{C}, 24 \mathrm{~h}, 90 \%$; c) DIBAL-H, DCM, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$.

We began synthesis of Wittig salt 7 starting from 1,3 propanediol (17) as described in Scheme 4. The 1,3 propanediol (17) was selectively protected as silyl ether using NaH to afford mono protected diol 18 with good yield [16]. The primary alcohol was then oxidized to aldehyde using PCC which was homologated further with C2- Wittig salt 21 to afford α, β unsaturated ester 16 with $>95 \%$ trans configuration as indicated by ${ }^{1} \mathrm{H}$ NMR [17].

3.2. Reagents and conditions

a) TBDMSCl, NaH, THF, $0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$; b) PCC/NaOAc, DCM, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$; C2-wittig (21), $24 \mathrm{~h}, 82 \%$; c) (DHQ) ${ }_{2}$ PHAL (15a) or (DHQD) 2_{2} PHAL (15b) $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}$,

Scheme 2. Retrosynthesis of 7 (Wittig salt) from 1, 3-Propanediol (17).

Scheme 3. Synthesis of R - γ-valerolactol (6) from R - γ-Valerolactone (10).
$\mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$-Butanol: $\mathrm{H}_{2} \mathrm{O}(2: 3), 24 \mathrm{~h}, 5^{\circ} \mathrm{C}, 94 \%$; d) Pp TS , Acetone, 2, 2-dimethoxy propane, $24 \mathrm{~h}, 25^{\circ} \mathrm{C}, 90 \%$; e) TBAF, THF, $0-5^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 95 \%$; f) I_{2}, TPP, imidazole, DCM, rt, $2 \mathrm{~h}, 82 \%$; g) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$: THF (1: 4), $5^{\circ} \mathrm{C}, 4 \mathrm{~h}, 89 \%$; h) TPP, ACN, reflux, $12 \mathrm{~h}, 88 \%$.

The α, β unsaturated ester 16 was then converted into a chiral
diol via Sharpless asymmetric dihydroxylation. Both the enantiomers 15 a and 15 b were synthesized by using a suitable reagent system [17b,c]. Thus obtained stereogenic centers as secondary diols in compound 15 a and 15 b were protected separately using 2,2 dimethoxy propane in an acetone and catalytic amount of PpTS to afford 14a in good yields [17c]. The compound 14a was desilylated with TBAF to afford hydroxy ester 19a [18].

The hydroxy ester 19a was subjected to Mitsunobu mediated halogenation in presence of iodine and triphenylphosphine to afford the corresponding iodo ester 20a [19]. The iodo ester 20a was then treated with NaBH_{4} in a MeOH:THF (1:4) to afford the corresponding iodo alcohol 13a. The iodo alcohol 13a was finally converted to corresponding Wittig salt 7a and its antipode 13b was traced from 7b in similar fashion.

Now the stage is set to synthesize the title compound Cladospolide C (4) using Wittig salt 7 and Lactol 6 via Wittig olefination as mentioned in Scheme 5 The obtained lactol 6 (Scheme 3) was treated with Wittig salt 7a (Scheme 4) under Wittig olefination condition [20] to afford corresponding ene-diol 22a. Ene-diol 22a was then subjected to catalytic hydrogenation at 40 psi using $\mathrm{Pd}(\mathrm{OH})_{2}$ as catalyst at ambient temperature to afford the corresponding saturated diol 8a [21].

Scheme 4. Synthesis of Wittig salt (7a) \& (7b) starting from 1, 3 propanediol (17).

Scheme 5. Wittig olefination of Lactol 6 \& Wittig salt 7.

Scheme 6. Formal synthesis of Cladospolide C (4) \& epi-Cladospolide C (23).

3.3. Reagents and conditions

a) NaHMDS, THF, $-78^{\circ} \mathrm{C}, 86 \%$; b) (i) $\mathrm{H}_{2}-\mathrm{Pd}(\mathrm{OH})_{2}, 40$ psi, ethylacetate, rt, 98\%; (ii) BAIB/TEMPO, DCM, 2 h, C2-Wittig (21), rt, 94\%.

This step afforded the ideal structural frame work to expedite the final molecule formal synthesis via selective oxidation. Thus compound 8a was subjected to one pot selective oxidation and concomitant C2-ylide extension under BAIB/TEMPO [22] conditions to afford 9a with good E-selectivity and yield. Diastereomer 9b traced from 8 b in similar fashion with $E: Z$ ratio (96.2 : 3.8) estimated by GC [23].

The epi-cladospolide C (23) was synthesized formally from Compound 9a and similarly titled Cladospolide-C (4) was synthesized formally from $9 b$ (Scheme 6) using the reported procedure [24]. Cladospolide B (2) can be synthesized formally from epi-Cla-dospolide-C (23) using reported procedure [25].

4. Conclusion

In summary, formal synthesis of Cladospolide C (4) and epiCladospolide $C(23)$ has been developed with good yields. The route of synthesis developed for these macrolides utilize fairly inexpensive reagents and operationally friendly processes. This strategy can be utilized for the stereoselective synthesis of other macrolides. The application of this methodology for the synthesis of other biologically active complex macrolides is currently underway.

5. Experimental section

5.1. General information

All reagents were used as received from commercial sources without further purification or prepared as described in the literature. Reactions were monitored by thin layer chromatography (TLC) performed on Merck TLC silica gel 60 F254 aluminium plates. Visualization of the spots on the TLC plates was achieved by exposure to UV radiation (254 nm) or by using an appropriate TLC staining reagent (such as PMA, anisaldehyde and ninhydrin). Chromatographic purification of products was carried out by flash column chromatography on silica gel (60-120 mesh or 100-200 mesh or 230-400 mesh as the case required). Melting points were determined using a Differential Scanning Calorimeter (DSC, Q2000, TA) apparatus. Infrared spectra were recorded on a PerkinElmer 1650 Fourier transform spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR
spectra were recorded on a Varian 400 MHz spectrometer. Chemical shifts (δ) in ppm are reported relative to $\mathrm{Me}_{4} \mathrm{Si}(=0 \mathrm{ppm})$ by using residual solvent signals as internal reference $\left[\mathrm{CDCl}_{3}\right.$: $\delta=7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H} \quad \mathrm{NMR}\right)$ and $77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C} \quad \mathrm{NMR}\right) ; \mathrm{CD}_{3} \mathrm{OD}$: $\delta=3.31 \mathrm{ppm} \quad\left({ }^{1} \mathrm{H} \quad \mathrm{NMR}\right) \quad$ and $49.2 \mathrm{ppm} \quad\left({ }^{13} \mathrm{C} \quad \mathrm{NMR}\right)$; DMSO $-d_{6}: \delta=2.50 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR $)$ and $39.5 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ NMR $\left.)\right]$. LRMS data were recorded on an Agilent 1200 Series liquid chromatography module hyphenated to a 6430 Triple Quad LC/MS system. HRMS spectra were recorded on Micromass LCT Premier mass spectrometer equipped with an ESI lockspray source for accurate mass values.

5.2. Experimental procedures

5.2.1. Synthesis of 3-(tert-butyldimethylsilyloxy) propan-1-ol (18)

To a stirred solution of 1, 3-propane diol (17) ($3.0 \mathrm{~g}, 39.42 \mathrm{mmol}$) in dry THF (40 mL) at $0^{\circ} \mathrm{C}$ was added oil free $\mathrm{NaH}(0.95 \mathrm{~g}$, $39.42 \mathrm{mmol}, 1.0$ equiv.) in portions over 15 min . The reaction mixture was stirred at room temperature for 30 min , then cooled to $0^{\circ} \mathrm{C}$ after which TBDMSCl ($5.94 \mathrm{~g}, 39.42 \mathrm{mmol}, 1.0$ equiv.) was added. The reaction mixture was stirred at room temperature for 2 h . It was then quenched with ice cold water $(10 \mathrm{~mL})$ and the solution extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography to give 18 (6.75 g, 90\%). Analytical data: Colorless oil.; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3373,2955,2930,2858,1472,1256,1087,965$, 836, 774.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.078(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $1.75(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.53$ (2C), 18.13, 25.63, 25.83, 25.90, 34.19, 62.27, 62.79.; HRMS (ESI+): Calcd. for $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}: 191.1466$ found: 191.1467.

5.2.2. Synthesis of (E)-Ethyl 5-(tert-butyldimethylsilyloxy) pent-2enoate (16)

To a mixture of PCC ($5.1 \mathrm{~g}, 23.64 \mathrm{mmol}, 1.5$ equiv.) and NaOAc ($1.94 \mathrm{~g}, 23.64 \mathrm{mmol}, 1.5$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added a solution of alcohol (18) (3.0 g, 5.76 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at rt and then diluted with petroleum ether/EtOAc (7: 3, 80 mL). The slurry was stirred and filtered through a pad of silica gel and Celite. The residue was washed 3 to 4 times with petroleum ether/ EtOAc (7:3) and filtered. The filtrate was concentrated to give virtually pure aldehyde, which was used directly in the next reaction. To a stirred solution of
aldehyde ($4.05 \mathrm{~g}, 18.07 \mathrm{mmol}$) in dry $\mathrm{DCM}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added C2-Wittig ($6.04 \mathrm{~g}, 1.1$ equivalents ylide). The mixture was stirred at room temperature for 24 h at rt , solvent was removed under vacuum and crude residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9: 1) as eluent to afford 16 ($3.34 \mathrm{~g}, 82 \%$ overall two stages). Colorless oil.; IR $\left(\mathrm{CHCl}_{3}\right.$, cm^{-1}): 3054, 2930, 2897, 2856, 1724, 1655, 1472, 1464, 1448, 1388, 1367, 1313, 1257, 1176, 1097, 1043, 980, 867, 837, 776, 668.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $2.38-2.43$ (m, 2H), $3.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.85(\mathrm{dt}, J=15.6 \& 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J=15.6 \& 1.5 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.35,14.23,25.63,25.85,35.67,60.14$, 61.55, 122.93, 145.83, 166.48.; HRMS (ESI+): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}+\mathrm{H}: 259.1729$ found: 259.1721.
5.2.3. Synthesis of (2S, 3R)-ethyl5-(tert-butyldimethylsilyloxy)-2, 3dihydroxypentanoate (15a)

To a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(11.46 \mathrm{~g}, 34.82 \mathrm{mmol}, 3.0$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3} \quad\left(4.81 \mathrm{~g}, \quad 34.82 \mathrm{mmol}, 3.0\right.$ equiv.), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1.10 g , $11.60 \mathrm{mmol}, 1.0$ equiv.), NaHCO_{3} ($2.92 \mathrm{~g}, 34.82 \mathrm{mmol}, 3.0$ equiv.), (DHQ) $)_{2}$ PHAL ($90.4 \mathrm{mg}, \quad 0.116 \mathrm{mmol}, \quad 1 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($17.1 \mathrm{mg}, 46.4 \mathrm{mmol}, 0.4 \mathrm{~mol} \%$), t - $\mathrm{BuOH}(40 \mathrm{~mL}$), and water (60 mL) were added. The mixture was stirred for 5 min and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the cooled mixture, a solution of the α, β-unsaturated ester $16(3.0 \mathrm{~g}, 11.60 \mathrm{mmol})$ in $t-\mathrm{BuOH}(20 \mathrm{~mL})$ was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h . It was then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(6 \mathrm{~g})$ and stirred for 30 min . The solution was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9: 1 to 3: 2) as eluent to afford 15a (3.2 g , 94\%). Similarly antipode 15b synthesized from 16 using above procedure using (DHQD) ${ }_{2} \mathrm{PHAL}(2.9 \mathrm{~g}, 85 \%)$.
5.2.3.1. Compound 15a. Viscous oil.; $[\alpha]_{D}^{20}=+3.00\left(c \mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$;; IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 3472, 3020, 2957, 2931, 2859, 1737, 1472, 1388, 1258, 1217, 1129, 1097, 1026, 838, 759, 669.; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.074(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.77$ (m, 1H), 1.90-1.99 (m, 1H), 3.20 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 0 \mathrm{H}), 3.25$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.81-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=3.5,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16-4.20 (m, 1H), $4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta-5.56(2 \mathrm{C}), 14.14,18.14,25.82$ (3C), 35.26, 61.59, 61.81, 72.09, 73.67, 173.16.; HRMS (ESI+): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H}$: 293.1784 found: 293.1770.
5.2.3.2. Compound 15b. Viscous oil.; $[\alpha]_{D}^{25}=-3.24\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$.; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3479,3019,2956,2930,2885,1736,1471,1369$, $1250,1210,1096,837,758,667 . ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 0.067$ $(\mathrm{s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.28-1.31(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.97(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.06$ $(\mathrm{m}, 1 \mathrm{H}), 4.16-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.30(\mathrm{q}, J=7.4 \& 14.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-5.54,-5.52,14.14,18.14,25.82,35.24$, 61.61, 61.82, 72.11, 73.67, 173.18.; HRMS (ESI+): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H}: 293.1784$ found: 293.1775 .

5.2.4. Synthesis of ethyl (4R,5S)-5-(2-((tert-butyldimethylsilyl)oxy) ethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (14a)

To a solution of diol $15 \mathrm{a}(3.0 \mathrm{~g}, 10.26 \mathrm{mmol})$ in dry acetone $(50 \mathrm{~mL})$ was added 2, 2-dimethoxy propane ($3.78 \mathrm{~mL}, 30.77 \mathrm{mmol}$, 3.0 equiv.) followed by p - $\mathrm{TsOH}(5 \mathrm{mg})$. The reaction mixture was stirred at room temperature for 12 h . Solid $\mathrm{NaHCO}_{3}(0.5 \mathrm{~g})$ was then added and stirred for 15 min . The solution was filtered through a pad of silica gel and washed with EtOAc and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9: 1 to 4: 1) as eluent to afford 14 a (3.07 g ,
90%). Similarly antipode 15b was synthesized from 14b using above procedure to afford ($2.71 \mathrm{~g} .88 \%$).
5.2.4.1. Compound 14a. Colorless oil.; $[\alpha]_{D}^{20}=-1.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$.; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2988,2955,2930,2858,1758,1472,1382,1372,1257$, 1217, 1192, 1168, 1102, 1036, 939, 837, 776, 759, 667.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.039(\mathrm{~s}, 6 \mathrm{H}), 0.871(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 1 \mathrm{H})$, $3.72-3.82(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.29(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.45,14.12,18.20,25.8,27.13,36.46,59.38,61.22,75.98,78.96$, 110.66, 170.69.; HRMS (ESI+): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H}: 293.1784$ found: 293.1788.
5.2.4.2. Compound 14b. Colorless oil.; $[\alpha]_{D}^{25}=+1.41\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$.; IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 3021, 2991, 2931, 2884, 1752, 1472, 1484, 1383, $1372,1256,1216,110,811,837,758,667 ;{ }^{1}{ }^{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta 0.041(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.03(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.80(\mathrm{~m}$, $2 \mathrm{H}), 4.17-4.28(\mathrm{~m}, 4 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta-5.44,-5.39$, 14.15, 18.23, 25.64, 25.85, 27.15, 36.48, 59.40, 61.27, 75.98, 78.96, 110.68, 170.73.; HRMS (ESI+): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H}: 293.1784$ found: 293.1786.

5.2.5. Synthesis of ethyl(4S, 5R)-5-(2-hydroxyethyl)-2, 2-dimethyl1, 3-dioxolane-4-carboxylate (19a)

To a solution of $14 \mathrm{a}(8.0 \mathrm{~g}, 0.024 \mathrm{~mol})$ in $\mathrm{THF}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added TBAF (1.0 M solution in THF, $28.91 \mathrm{~mL}, 0.028 \mathrm{~mol}$) drop wise. The resulting brown solution was stirred for 12 h at $0-5^{\circ} \mathrm{C}$. up on consumption of starting material as indicated by TLC, the solvent was removed in vacuum, and the crude residue was purified by flash column chromatography (hexanes/EtOAc) to afford diol 19a ($5.0 \mathrm{~g}, 95 \%$). Similarly antipode 19 b was synthesized from 14 b using above procedure to afford (4.71 g . 94%).
5.2.5.1. Compound 19a. Colorless oil.; $[\alpha]_{D}^{25}=-1.76$ (c 0.9, CHCl_{3}); IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 3501, 2939, 2988, 1755, 1466, 1373, 1214, 1098, $880,872 . ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26(\mathrm{t}, \mathrm{J}=7.12 \mathrm{~Hz}, 3 \mathrm{H}), 1.42$ (s, 3H), 1.46 (s, 3H), 1.89-2.18 (m 2H), $3.8(\mathrm{t}, J=5.76 \mathrm{~Hz}, 2 \mathrm{H}$), 4.19 $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.09,25.50,27.00,35.76$, 59.97, 61.52, 77.72, 78.92, 110.97, 170.73.; HRMS (ESI+): Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5}+\mathrm{H}$: 219.1232 found: 219.1243.
5.2.5.2. Compound 19b. Colorless oil.; $[\alpha]_{D}^{25}=+1.27\left(\mathrm{c} \mathrm{0.5}, \mathrm{CHCl}_{3}\right)$;; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3520,3018,2992,2939,1749,1456,1383,1216$, 1099, 755, 667.; ${ }^{\text {h }}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.25-1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 1 \mathrm{H})$, 2.39 (bs, 1H), 3.77-3.81 (q, $J=5.3 \& 10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.28$ (m, 4H).; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.12,25.52,27.02,35.79,59.95$, 61.56, 76.7, 78.94, 110.99, 170.77.; HRMS (ESI+): Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5}+\mathrm{H}: 219.1232$ found: 219.1240.

5.2.6. Synthesis of ethyl (4R, 5S)-5-(2-iodoethyl)-2, 2-dimethyl-1, 3-dioxolane-4-carboxylate (20a)

To the solution of $\mathrm{PPh}_{3}(7.07 \mathrm{~g}, 0.027 \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(22.5 \mathrm{~mL})$ under N_{2}, was added 1 H -imidazole ($1.82 \mathrm{~g}, 0.027 \mathrm{~mol}$) and then with $\mathrm{I}_{2}(6.78 \mathrm{~g}, 0.027 \mathrm{~mol})$. A solution of $19 \mathrm{a}(4.5 \mathrm{~g}$, 0.020 mol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22.5 \mathrm{~mL})$ was added, and the mixture was stirred at r.t. for 2 h . Evaporation of the solvent gave a crude product, which was filtered through a short silica-gel column (Hexane/Ethylacetate $9: 1 ; \mathrm{R}_{\mathrm{f}}: 0.5$) to give pure $20 \mathrm{a}(5.5 \mathrm{~g}, 82 \%$). Similarly antipode 20b synthesized from 19b using above procedure ($5.8 \mathrm{~g} .83 \%$).
5.2.6.1. Compound 20a. Yellow oil.; $[\alpha]_{D}^{25}=-3.08\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2988,2908,2937,1759,1731,1445,1352,1200,1036$,
854.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.289(\mathrm{t}, J=7.16 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}$, 3 H), 1.45 ($\mathrm{s}, 3 \mathrm{H}$), 2.13-2.21 (m 1H), 2.27-2.35 (m, 1H), 3.21-3.35 $(\mathrm{m}, 2 \mathrm{H}), 4.12-4.28(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.51,14.19$, 25.60, 27.06, 37.74, 61.53, 78.37, 78.68, 111.25, 170.33.; HRMS (ESI+): Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{I}+\mathrm{H}: 329.0250$ found: 329.0235.
5.2.6.2. Compound 20b. Yellow oil.; $[\alpha]_{D}^{25}=+3.52\left(c 0.51, \mathrm{CHCl}_{3}\right)$;; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 3020, 2989, 2938, 2906, 1756, 1732, 1445, 1372, 1238, 1035, 853, 757, 667.; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.28-1.31$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.19(\mathrm{~m}, 1 \mathrm{H})$, $2.20-2.32(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.34(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.27$ ($\mathrm{m}, 2 \mathrm{H}$).; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 0.59,14.22,25.62,27.08$, 37.74, 61.56, 78.37, 78.68, 111.26, 170.35.; HRMS (ESI+): Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{I}+\mathrm{H}: 329.0250$ found: 329.0257.

5.2.7. Synthesis of ((4S, 5S)-5-(2-iodoethyl)-2, 2-dimethyl-1, 3-dioxolan-4-yl) methanol 13a

To the solution of 20a ($5.0 \mathrm{~g}, 0.015 \mathrm{~mol}$) in $\mathrm{MeOH}(10.0 \mathrm{~mL})$ and THF (40.0 mL) at $0-10^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(0.855 \mathrm{~g}, 0.022 \mathrm{~mol})$ lot wise (H_{2} evolution) under inert atmosphere. After complete addition temperature was allowed to come to $25-35^{\circ} \mathrm{C}$ and maintained for $1-2 \mathrm{~h}$ by TLC monitoring. Upon absence of starting material, reaction mass was cooled to $0-10^{\circ} \mathrm{C}$ and quenched with saturated ammonium solution and product was extracted with 2X65 mL ethyl acetate, combined organic layers evaporated and the residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9: 1 to 7: 3) as eluent to afford 13a ($3.9 \mathrm{~g}, 89 \%$). Similarly antipode 13b synthesized from 20b using above procedure ($3.71 \mathrm{~g} .84 \%$).
5.2.7.1. Compound 13a. Pale yellow oil.; $[\alpha]_{D}^{25}=-7.99$ (c 0.5 , $\left.\mathrm{CHCl}_{3}\right)$.; $\operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3436,2985,2933,2876,1437,1371,1218$, 1090, 847.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.40$ (s, 6 H), 1.92 (bs, 1H), 2.07-2.12 (m, 2H), 3.20-3.26 (m, 1H), 3.29-3.35 (m, 1H), 3.61-3.64 $(\mathrm{m}, 1 \mathrm{H}), 3.75-3.81(\mathrm{~m}, 2 \mathrm{H}), 39.9-3.98(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.00,26.99,27.28,37.43,61.75,80.60,81.12,109.19 . ;$ HRMS (ESI+): Calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{I}+\mathrm{H}: 287.0144$ found: 287.0146 .
5.2.7.2. Compound 13b. Pale yellow oil.; $[\alpha]_{D}^{25}=+5.06$ (c 0.5, $\left.\mathrm{CHCl}_{3}\right)$.; $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3435,2985,2933,2876,1437,1371,1218$, 1049, 1089, 847.; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.39$ (s, 3H), 2.03-2.12 (m, 3H), 3.19-3.34 (m, 2H), 3.61-3.63 (m, 1H), 3.74-3.80 (m, 2H), $3.80-3.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 1.09,26.99,27.28$, 37.40, 61.75, 77.34, 80.63, 109.20.; HRMS (ESI+): Calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{I}+\mathrm{H}: 287.0144$ found: 287.0147 .
5.2.8. Synthesis of ((4S, 5S)-5-(2-(iodotriphenyl-l5-phosphanyl) ethyl)-2, 2-dimethyl-1, 3-dioxolan-4-yl) methanol (7a)

To the solution of 13a ($3.5 \mathrm{~g}, 0.012 \mathrm{~mol}$) in Acetonitrile (35 mL) was added TPP ($6.41 \mathrm{~g}, 0.024 \mathrm{~mol}$) and reflux for 12 h solvent was evaporated and obtained crude residue was purified by column chromatography by using $5 \% \mathrm{MeOH} / \mathrm{DCM}$ to afford 7 a ($5.9 \mathrm{~g}, 88 \%$). Similarly antipode 7b synthesized from 13b using above procedure to afford ($6.1 \mathrm{~g}, 90 \%$).
5.2.8.1. Compound 7a. Waxy solid.; $[\alpha]_{\mathrm{D}}^{20}=-1.66$ (c 0.5, CHCl_{3}).; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3377,2987,2934,2880,2247,2198,1587,1483,1376$, 1216, 1110, 1053, 909, 721, 687, 642.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.92(\mathrm{~m} \mathrm{1H}), 2.22-2.32(\mathrm{~m}, 1 \mathrm{H})$, $3.56-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.95(\mathrm{~m}, 4 \mathrm{H})$, $4.38-4.42(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.83(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.34,19.86,26.58,26.62,26.87,27.10,62.13,78.73,78.89,79.98$, 108.68, 117.46, 118.32, 130.51, 130.63, 133.59, 133.69, 135.19, 135.22.; HRMS (ESI+): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{P}-\mathrm{I}: 421.1933$ found: 421.1930.
5.2.8.2. Compound 7b. Waxy solid.; $[\alpha]_{\mathrm{D}}^{25}=+4.92\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$.; IR $\left(\mathrm{CHCl}_{3,} \mathrm{~cm}^{-1}\right): 3368,3059,3014,2966,2937,1588,1438,1216,1113$, 1060, 762, 724, 662.; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.30$ (s, 3H), 1.32 (s, 3H), 1.80-1.88 (m, 1H), 2.01-2.27 (m, 1H), 3.41-3.60 (m, 1H), $3.67-3.87(\mathrm{~m}, 3 \mathrm{H}), 4.33-4.38(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.82(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 19.32, 19.85, 26.54, 26.59, 26.89, 27.12, $61.95,78.53,78.69,80.03,108.73,117.35,118.21,130.57,130.70$, 133.57, 133.67, 135.27, 135.30.; HRMS (ESI+): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{P}$ I: 421.1933 found: 421.1928 .

5.2.9. Synthesis of (R, Z)-7-((4S, 5S)-5-(hydroxymethyl)-2, 2-dimethyl-1, 3-dioxolan-4-yl) hept-5-en-2-ol (22a)

To the solution of $7 \mathrm{a}(5.3 \mathrm{~g}, 9.7 \mathrm{mmol})$ in THF (25 mL) was added 1.0 M NaHMDS ($35.29 \mathrm{~mL}, 35.2 \mathrm{mmol}$) at $-30^{\circ} \mathrm{C}$ under N_{2} atmosphere (yellow suspension to orange colored solution). for $15-30 \mathrm{~min}$. The solution of lactol $6(0.9 \mathrm{~g}, 8.8 \mathrm{mmol})$ was added as a solution in THF $(10 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ to above orange colored reaction mass, maintained addition $1-2 \mathrm{~h}$, then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(45 \mathrm{~mL})$ and allowed to come to rt and stirred for $1-2 \mathrm{~h}$. The product was extracted with $3 \times 45 \mathrm{~mL}$ of ethyl acetate solvent was evaporated and obtained crude residue was purified by column chromatography to afford $22 \mathrm{a}(1.85 \mathrm{~g}, 86 \%)$. Similarly antipode 22bwas synthesized from 7b using above procedure to afford ($1.75 \mathrm{~g}, 82 \%$).
5.2.9.1. Compound 22a. Viscous oil.; $[\alpha]_{D}^{20}=-3.5\left(c 0.2, \mathrm{CHCl}_{3}\right)$.; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3413,2984,2927,2250,1650,1455,1375,1217,1164$, $1055,904,842,725,648 . ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17-1.18$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.53(\mathrm{~m} \mathrm{2H}), 2.06-2.28$ $(\mathrm{m}, 2 \mathrm{H}), 2.29-2.49(\mathrm{~m}, 3 \mathrm{H}), 3.46(\mathrm{bs}, 1 \mathrm{H}), 3.61-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.73-3.82(\mathrm{~m}, 3 \mathrm{H}), 3.89-3.95(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.56(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 132.28,124.63,108.70,80.86,66.77,62.07$, 38.45, 27.17, 26.95, 23.70, 23.52.; GC-MS (ES): 229 [$\left.{ }^{+}-15\right]$.
5.2.9.2. Compound 22b. Viscous oil.; $[\alpha]_{D}^{20}=+3.0\left(\mathrm{c}_{\mathrm{D}} .2, \mathrm{CHCl}_{3}\right)$.; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3429,3015,2989,2932,1634,1373,1216,1057,843$, $755,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17-1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, 3 H), 1.40 (s, 3H), 1.42 (s, 3H), 1.47-1.53 (m 2H), 2.06-2.51 (m, 5H), $3.58-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.89-3.96(\mathrm{~m}, 1 \mathrm{H})$, $5.43-5.56(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.31,124.67$, 108.72, 80.85, 66.75, 62.02, 38.44, 27.19, 26.96, 23.77, 23.53.; GC-MS (ES): $229\left[\mathrm{M}^{+}-15\right]$.

5.2.10. Synthesis of (R)-7-((4S, 5S)-5-(hydroxymethyl)-2, 2-

 dimethyl-1, 3-dioxolan-4-yl) heptan-2-ol (8a)To a solution of $22 \mathrm{a}(1.8 \mathrm{~g}, 7.3 \mathrm{mmol})$ in ethyl acetate $(36 \mathrm{~mL})$ at rt added $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ by wt. and hydrogenated for 4 h at 40 psi , upon completion of reaction catalyst was removed by filtration, thus obtained filtrate was evaporated to afford 8 a ($1.75 \mathrm{~g}, 96 \%$). Similarly antipode 8 b was synthesized from 22busing above procedure to afford ($1.88 \mathrm{~g}, 98 \%$).
5.2.10.1. Compound 8a. Colorless oil.; $[\alpha]_{\mathrm{D}}^{20}=+2.33\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)$.; IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 3450, 2988, 2965, 2933, 2860, 1438, 1457, 1379, 1243, 1050, 756, 666.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.16-1.18$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-2.12(\mathrm{~m}, 18 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.89$ (m 4H).; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.49,25.55,25.57,25.95,27.01$, 27.37, 29.59, 32.93, 39.16, 61.97, 68.05, 81.43, 108.57.; HRMS (ESI+): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O} 4+\mathrm{H}$: 247.1909 found: 247.1899.
5.2.10.2. Compound 8b. Colorless oil.; $[\alpha]_{D}^{20}=-3.11\left(c \quad 0.2, \mathrm{CHCl}_{3}\right)$; IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$): 3435, 3018, 2990, 2934, 2860, 1458, 1372, 1215, 770, 669.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.16-1.17$ (d, $\left.J=6.2 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $1.33-1.79(\mathrm{~m}, 18 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.80(\mathrm{~m} \mathrm{3H})$, $3.84-3.87(\mathrm{~m}, 1 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.47,25.55$,
25.94, 27.01, 27.36, 29.56, 32.91, 61.99, 68.05, 81.46, 108.58.; GC-MS (ES): $231\left[\mathrm{M}^{+}-15\right]$.
5.2.11. Synthesis of ethyl (E)-3-\{(4S, 5S)-5-[(R)-6-hydroxyheptyl $]-2$, 2-dimethyl-1, 3-dioxolan-4-yl\}acrylate (9a)

To diol 8a ($175 \mathrm{mg}, 0.71 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added BAIB ($263 \mathrm{mg}, 0.81 \mathrm{mmol}$) and TEMPO ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$). After stirring at room temperature for 2 h , the mixture was cooled to $0^{\circ} \mathrm{C}$, and (ethoxycarbonylmethylene) triphenylphosphorane (21) ($320 \mathrm{mg}, 0.92 \mathrm{mmol}$) was added. The stirring was continued for another 2 h at room temperature. After completion of the reaction, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (hexanes/EtOAc) to afford α, β-unsaturated ester 9a ($210 \mathrm{mg}, 94 \%$). Similarly diastereomer 9b synthesized from 8b using above procedure to afford ($195 \mathrm{mg}, 88 \%$).
5.2.11.1. Compound 9a. Pale yellow liquid.; $[\alpha]_{D}^{20}=+10$ (c 0.1 , $\left.\mathrm{CHCl}_{3}\right)$.; $\mathrm{IR}\left(\mathrm{CHCl}_{3,} \mathrm{~cm}^{-1}\right): 3504,2984,2933,2860,2250,1716,1660$, 1459, 1373, 1240, 1168, 1103, 1036, 907, 725, 647.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82-6.87$ (dd, $\left.J=5.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08-6.12$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.82$ (m, 2H), 1.27-1.62 (m, 19H), 1.16-1.18 (d, J=6.16 Hz, 3H).; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.02, 144.11, 122.73, 109.34, 80.21, 68.03, 60.59, 39.15, 31.96, 29.54, 27.24, 26.63, 25.91, 25.54, 23.49, 14.18.; GC-MS (ES): 299 [$\left.\mathrm{M}^{+}-15\right]$.
5.2.11.2. Compound 9b. Pale yellow liquid., $[\alpha]_{\mathrm{D}}^{20}=-7.9$ (c 0.1 , $\left.\mathrm{CHCl}_{3}\right)$. $\mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3528,3018,2988,2936,2881,1717,1662$, 1459, 1371, 1216, 1035, 756, 668.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82-6.88$ (dd, $J=5.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.12$ (dd, $J=1.4 \mathrm{~Hz}$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.23(\mathrm{~m}, 3 \mathrm{H}), 3.69-3.80(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.64(\mathrm{~m}$, $19 \mathrm{H}), 1.16-1.18$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.05,144.11,122.74,109.336,80.58,80.56,68.04,60.62,39.16$, 31.95, 29.55, 27.26, 25.94, 25.54, 23.49, 14.21.; GC-MS (ES): 299 [$\left.\mathrm{M}^{+}-15\right]$.

Acknowledgments

The authors would like to thank Dr. H. Rama Mohan and Dr. Reddy's Laboratories for their support and encouragement. We also thank analytical department of Dr. Reddy's Laboratories Ltd for providing analytical support DRL IPD communication No: IPDO IPM-00546.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tet.2019.04.001.

References

[1] (a) A. Hirota, A. Isogai, H. Sakai, Agric. Biol. Chem. 45 (1981) 799;
(b) A. Hirota, H. Sakai, A. Isogai, Y. Kitano, T. Ashida, H. Hirota, T. Takahashi, Agric. Biol. Chem. 49 (1985) 903;
(c) H. Hirota, A. Hirota, H. Sakai, A. Isogai, T. Takahashi, Bull. Chem. Soc. Jpn. 58 (1985) 2147;
(d) A. Hirota, H. Sakai, A. Isogai, Agric. Biol. Chem. 49 (1985) 731.
[2] Y. Fujii, A. Fukuda, T. Hamasaki, I. Ichimoto, H. Nakajima, Phytochemistry 40 (1995) 1443.
[3] C.J. Smith, D. Abbanat, V.S. Bernan, W.M. Maiese, M. Greenstein, J. Jampa, A. Tahir, C.M. Ireland, J. Nat. Prod. 63 (2000) 142.
[4] (a) H. Zhang, H. Tomoda, N. Tabata, H. Miura, M. Namikoshi, Y. Yamaguchi, R. Masuma, S. Omura, J. Antibiot. 54 (2001) 635;
(b) R.,R. Chada, S. Devatha, N.,R. Nagavaram, Eur. J. Org. Chem. 18 (2013) 3786-3796.
[5] (a) D. Si, N.M. Sekar, K.P. Kaliappan, Org. Biomol. Chem. 9 (2011) 6988; (b) K. Rajesh, V. Suresh, J.J.P. Selvam, C.B. Rao, Y. Venkateswarlu, Synthesis (2010) 1381;
(c) K.P. Kaliappan, D. Si, Synlett (2009) 2441;
(d) M.G. Banwell, D.T. Loong, J. Org. Biomol. Chem. 2 (2004) 2050; (e) M.G. Banwell, K.A. Jolliffe, D.T.J. Loong, K.J. McRae, F. Vounatsos, J. Chem. Soc. Perkin Trans. 1 (2002) 22;
(f) G. Solladié, A. Almario, Tetrahedron: Asymmetry 6 (1995) 559;
g) G. Solladié, A. Antonio, Pure Appl. Chem. 66 (1994) 2159;
(h) I. Ichimoto, M. Sato, M. Kirihata, H. Ueda, Chem. Express 2 (1987) 495; (i) S. Maemoto, K. Mori, Chem. Lett. (1987) 109;
(j) K. Mori, S. Maemoto, Liebigs Ann. Chem. (1987) 863.
[6] (a) J.S. Yadav, S.S. Mandal, Synlett 19 (2011) 2803;
(b) K.R. Prasad, V.R. Gandi, Tetrahedron: Asymmetry 22 (2011) 499;
(c) Y. Xing, G.A. O'Doherty, Org. Lett. 11 (2009) 1107;
d) W.-K. Wang, J.-Y. Zhang, J.-M. He, S.-B. Tang, X.-L. Wang, X.-G. She, X.F. Pan, Chin. J. Chem. 26 (2008) 1109;
(e) G.V.M. Sharma, J.J.R. Reddy, K.L. Reddy, Tetrahedron Lett. 47 (2006) 6537;
(f) G.V.M. Sharma, J.J.R. Reddy, K.L. Reddy, Tetrahedron Lett. 47 (2006) 6531; (g) S.K. Pandey, P. Kumar, Tetrahedron Lett. 46 (2005) 6625;
(h) K.A.B. Austin, M.G. Banwell, D.T.J. Loong, D. Rae, A.C. Willis, Org. Biomol. Chem. 3 (2005) 1081.
[7] (a) C.R. Reddy, N.N. Rao, P. Sujitha, C.G. Kumar, Synthesis 44 (2012) 1663; (b) B.M. Trost, A. Aponick, J. Am. Chem. Soc. 128 (2006) 3931;
(c) P. Srihari, E.V. Bhasker, S.J. Harshavardhan, J.S. Yadav, Synthesis (2006) 4041;
d) X. Franck, M.E.V. Araujo, J.-C. Jullian, R. Hocquemiller, B. Figadere, Tetrahedron Lett. 42 (2001) 2801;
(e) K.R. Prasad, V.R. Gandi, Tetrahedron: Asymmetry 21 (2010) 275;
f) L. Ferrie, S. Reymond, P. Capdevielle, J. Cossy, Synlett (2007) 2891.
[8] (a) C.R. Reddy, N.N. Rao, Tetrahedron Lett. 50 (2009) 2478;
(b) C.-Y. Chou, D.-R.J. Hou, J. Org. Chem. 71 (2006) 9987;
(c) M.G. Banwell, D.T.J. Loong, A.C. Willis, Aust. J. Chem. 58 (2005) 511.
[9] (a) D. Si, K.P. Kaliappan, Synlett 19 (2012) 2822;
(b) K.-J. Lu, C.-H. Chen, D.-R. Hou, Tetrahedron 65 (2009) 225;
(c) Y. Xing, J.H. Penn, G.A. O'Doherty, Synthesis (2009) 2847;
(d) Y. Xing, G.A. O'Doherty, Org. Lett. 11 (2009) 1107.
[10] (a) M.G. Banwell, D.T.J. Loong, A.C. Willis, Aust. J. Chem. 58 (2005) 511;
(b) T. Hudlicky, D. Gonzalez, D.T. Gibson, Aldrichim Acta 32 (1999) 35.
[11] (a) M.G. Banwell, D.T. Loong, J. Org. Biomol. Chem. 2 (2004) 2050;
(b) M.G. Banwell, K.A. Jolliffe, D.T.J. Loong, K.J. McRae, F. Vounatsos, J. Chem. Soc. Perkin Trans. 1 (2002) 22;
(c) G. Solladie, A. Almario, Tetrahedron: Asymmetry 6 (1995) 559;
(d) G. Solladie, A. Almario, Pure Appl. Chem. 66 (1994) 2159;
(e) I. Ichimoto, M. Sato, M. Kirihata, H. Ueda, Chem. Express 2 (1987) 495; (f) S. Maemoto, K. Mori, Chem. Lett. (1987) 109;
(g) K. Mori, S. Maemoto, Liebigs Ann. Chem. (1987) 863;
(h) S.K. Pandey, P. Kumar, Tetrahedron Lett. 46 (2005) 6625;
(i) K.A.B. Austin, M.G. Banwell, D.T.J. Loong, A.D. Rae, A.C. Willis, Org. Biomol. Chem. 3 (2005) 1081;
(j) M.G. Banwell, D.T.J. Loong, A.C. Willis, Aust. J. Chem. 58 (2005) 511;
(k) C.-Y. Chou, D.-R. Hou, J. Org. Chem. 71 (2006) 9887;
(1) G.V.M. Sharma, K.L. Reddy, J.J. Reddy, Tetrahedron Lett. 47 (2006) 6537.
[12] (a) K. Mori, S. Maemoto, Liebigs Ann. Chem. (1987) 863;
(b) S. Maemoto, K. Mori, Chem. Lett. 109 (1987).
[13] (a) R. Mandrioli, L. Mercolini, M.A. Saracino, M.A. Raggi, Curr. Med. Chem. 19 (2012) 1846;
(b) A.K. Ghosh, L. Swanson, J. Org. Chem. 68 (2003) 9823;
(c) B.H. Lipshutz, A. Lower, R.J. Kucejko, K. Noson, Org. Lett. 8 (2006) 2969; (d) E.L. Stangeland, T. Sammakia, J. Org. Chem. 69 (2004) 2381;
(e) J.W. Hilbon, Z.H. Lu, A.R. Jurgens, Q.K. Fang, P. Byers, S.A. Wald, C.H. Senanayake, Tetrahedron Lett. 42 (2001) 8919;
(f) R. Datrika, S.R. Kallam, S.R. Khobare, V.S. Gajare, M. Kommi, H.R. Mohan, S. Vidavalur, T.V. Pratap, Tetrahedron: Asymmetry 27 (2016) 603;
(g) R. Datrika, S.R. Kallam, V. Gajare, S. Khobare, V.S. Rama, M. Kommi, R.M. Hindupur, S. Vidavulur, P.V. Tadikonda, Chem. Select 2 (2017) 5828.
[14] (a) H. Jacobs, K. Berryman, J. Jones, A. Gopalan, Synth. Commun. 7 (1990) 999; (b) S. Tsuboi, J. Sakamoto, T. Kawano, M. Utaka, A. Takeda, J. Org. Chem. 56 (1991) 7177;
(c) J.D. White, T.C. Somers, G.N. Reddy, J. Org. Chem. 57 (1992) 4991;
(d) S.K. Taylor, R.F. Atkinson, E.P. Almli, M.D. Carr, T.J. Van Huis, M.R. Whittaker, Tetrahedron: Asymmetry 6 (1995) 157;
(e) V. Nair, J. Prahakaran, T.G. George, Tetrahedron 53 (1997) 15061;
(f) A.D. Rodriguez, W. Borzecka, I. Lavandera, V. Gotor, ACS Catal. 4 (2014) 386.
[15] R. Datrika, S. Kallam, K. Rambabu, S. Vidavalur, T.V. Pratap, Synth. Commun. 48 (2018) 2801-2808.
[16] (a) S. Lou, J.A. Westbrook, S.E. Schaus, J. Am. Chem. Soc. 126 (2004) 11440; (b) M.S. Mortensen, J.M. Osbourn, G.A. O' Doherty, Org. Lett. 9 (2007) 3105.
[17] (a) De-Run Li, Y. Qiang Tu, Guo-Qiang Lin, Wei-Shan Zhou, Tetrahedron Lett. 44 (2003) 8729;
(b) De-Run Li, Dong-Hui Zhang, Cai-Yun Sun, Ji-Wen Zhang, Li Yang, Jian Chen, Bo Liu, Ce Su, Wei-Shan Zhou, Guo-Qiang Lin, Chem. Eur J. 12 (2006) 1185; (c) R.A. Fernandes, V.P. Chavan, Tetrahedron: Asymmetry 22 (2011) 1312.
[18] E.J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 94 (2008) 6190.
[19] F. Badalassi, G. Klein, P. Crotti, J.-L. Reymond, Helv. Chim. Acta 85 (2002) 3090.
[20] Y. Matsumura, N. Mori, T. Nakano, H. Sasakura, T. Matsugi, H. Hara, Y. Morizawa, Tetrahedron Lett. 45 (2004) 1527.
[21] W.M. Pearlman, Tetrahedron Lett. 8 (1967) 1663.
[22] (a) Ch R. Reddy, N.N. Rao, P. Sujitha, C.G. Kumar, Eur. J. Org. Chem. (2012)

1819;
(b) J.M. Vatele, Tetrahedron Lett. 47 (2006) 715.
[23] GC-Ms Conditions: Column:HP-5, $30 \mathrm{~m}^{*} 0.32 \mathrm{~mm} \mathrm{~m}^{*} 0.25 \mu \mathrm{~m}$; Oven program: $100^{\circ} \mathrm{C}(0 \mathrm{~min}$ hold $) ; 10^{\circ} \mathrm{C} / \mathrm{min}$ to $270^{\circ} \mathrm{C}(10 \mathrm{~min}$ hold $)$; Flow: $1.0 \mathrm{~mL} / \mathrm{min}$, Injector Temperature: $220^{\circ} \mathrm{C}$; Auxillary temperature: $380^{\circ} \mathrm{C}$; Injection volume: $0.2 \mu \mathrm{~L}$; Split:100:1; Diluent: Acetonitrile; Mass conditions: Source: Electron impact; Analyser:Qudrupole; Source temperature: $230^{\circ} \mathrm{C}$;

Qudrupole; Temperature: $150^{\circ} \mathrm{C}$; Tune file: Auto tune; Solvent delay:3 min; Mass range: 20-700 a.m.u
[24] (a) Y. Xing, G.A. O' Doherty, Org. Lett. 11 (2009) 1107;
(b) C.R. Reddy, N.N. Rao, Tetrahedron Lett. 50 (2009) 2478.
[25] K.A.B. Austin, M.G. Banwell, D.T.J. Loong, D. Rae, A.C. Willis, Org. Biomol. Chem. 3 (2005) 1081.

[^0]: *This article is dedicated to Dr. J. S. Yadav Former Director CSIR-IICT On the occasion of his 70th birthday.

 * Corresponding author. Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd, Hyderabad 500 049, Telangana, India.
 ** Corresponding author.
 E-mail addresses: rajenderdatrika@gmail.com, prataptv@gmail.com (R. Datrika).

