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Scalable alternate end-game strategies for the synthesis of the anti-COVID drug molecule Nirmatrelvir (1,
PF-07321332) have been described. The first involves a direct synthesis of 1 via amidation of the car-
boxylic acid 7 (suitably activated as a mixed anhydride with either pivaloyl chloride or T3P) with the
amino-nitrile 10-HCI. T3P was found to be a more practical choice since the reagent promoted efficient

and concomitant dehydration of the amide impurity 9 (derived from the amino-amide contaminant
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8-HCl invariably present in 10-HCI) to 1. This observation allowed for the development of the second
strategy, namely a continuous flow synthesis of 1 from 9 mediated by T3P. Under optimized conditions,
this conversion could be achieved within 30 min in flow as opposed to 12-16 h in a traditional batch pro-
cess. The final API had quality attributes comparable to those obtained in conventional flask processes.

© 2023 Elsevier Ltd. All rights reserved.

As of August 2022, the on-going COVID-19 pandemic has
claimed 6.5 million lives worldwide [1]. While the vaccine program
continues to be rolled out globally, the incessant emergence of new
variants (such as B.1.1.529 or Omicron) of the causative SARS-CoV-
2 virus has made identification of newer antivirals for effective
clinical management of COVID-19 a necessity [2]. A very recent
therapeutic option in this regard is Paxlovid, which has been
authorized by USFDA in July 2022 for conditional use in treating
mild-to-moderate COVID-19 [3]. Paxlovid is an oral combination
therapy of the direct-acting antiviral Nirmatrelvir (1, PF-
07321332) and Ritonavir which acts as a pharmacokinetic booster
[4]. Nirmatrelvir is an irreversible inhibitor of SARS-CoV-2 viral
protease MP™ and has even shown promising in-vitro activity
against the SARS-CoV-2 variant Omicron [5-7].

From a structural and manufacturing standpoint, Nirmatrelvir
(Fig. 1), with its six chiral centres (some of which are highly prone
towards epimerization) and the highly orchestrated assembly of
three fragments that its preparation entails, is undoubtedly-one
of the more complex and synthetically challenging anti-COVID
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drugs known [8-15]. While acquisition of all the three Nirmatrelvir
fragments involves multi-step syntheses, the known process for
the endgame is particularly challenging. It employs expensive
and difficult-to-handle reagents such as the Burgess reagent or
involves prolonged reaction times (vide infra) which increases the
possibility of impurity formation owing to epimerization. Given
the topical importance of 1 and against the background of our
own research into one of its key synthetic fragments [16,17], our
interest was drawn into delineating a robust and cost-effective
endgame strategy for the synthesis of the APIL. The present manu-
script documents our efforts in this regard.

The best known and widely employed route (owing largely to
the ease of accessing the intermediate 8 in pure form) for the syn-
thesis of 1 has been illustrated in Scheme 1 [8,9]. As already
alluded to, the endgame in this route consists of: (a) amidation
of the carboxylic acid 7 with the amino-amide 8 at 25 °C for 16 h
in presence of HOPO (2-hydroxypyridine 1-oxide), DIPEA and
EDC-HClI to furnish the amide 9, and (b) Burgess reagent mediated
dehydration of the carboxamide moiety in 9 at 25 °C for 4 h to
obtain 1.

An alternate and a more convergent route to 1 is illustrated in
Scheme 2. This affords a direct access to the API via amidation of
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Fig. 1. Chemical structure of Nirmatrelvir 1 with the three key synthetic fragments
highlighted.
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7 with the amino-nitrile 10, thus bypassing the need to employ
amide dehydration at the final stage of an API synthesis [9]. Need-
less to say, the difficulty in accessing 10 in sufficient purity has
been a major bottleneck in the adoption of this route for manufac-
turing 1. In general, the purity requirements for advanced interme-
diates that are taken forward to the final active pharmaceutical
ingredient are stringently defined to ensure the desired pharma-
ceutical quality and regulatory aspects of the pharmaceutical
industry.

Against this background, we aimed to develop a process that
can afford 10 (preferably as a solid crystalline salt) with enough
purity to be deemed as a regulatory starting material (RSM). As
illustrated in Scheme 3, our synthesis commenced with converting
the ester 11 to the carboxamide 12. When carried out in commer-
cially available methanolic ammonia at RT, this reaction took
2-3 days to complete. Use of a fortified solution of ammonia in
methanol (obtained by passing ammonia gas through a pre-cooled
solution of 11 in methanol) allowed us to reduce the reaction time
to 18 h. Dehydration of the carboxamide 12 to the nitrile 13 could
be achieved with both trifluoroacetic anhydride (TFAA) and
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Scheme 2. Direct synthesis of Nirmatrelvir 1 via amidation of 7 with nitrile 10.
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Scheme 3. Synthesis of 10-HCI from 11.

1-propanephosphonic acid anhydride (T3P). However, it was
observed that addition of TFAA caused the reaction mixture to
form an extremely heavy suspension which was quite difficult to
stir. This led us to prefer using T3P as the dehydrating agent during
the scale-up batches.

Initial attempts towards Boc removal in 13 using TFA led to a
highly contaminated product even in the presence of carbocation
scavengers such as thioanisole. Minimizing hydrolysis of the nitrile
10 to the amide 8 during the course of the reaction and isolation
posed as one of the two key challenges; the other being the ability
to define a consistent range of yield and content of the impurity 8
in the isolated 10. Screening of various acids (both organic and
inorganic) and reaction conditions eventually led us to identify
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Scheme 1. Known route of synthesis for Nirmatrelvir 1, starting from the chiral bicyclic proline 2 - a fragment that is also employed in the construction of the anti-HCV drug

Boceprevir.'* The endgame steps have been indicated in red.
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Boc removal in 13 with aqueous HCl in THF as the best way for-
ward. Under optimized reaction conditions, the desired amino-
nitrile could be easily precipitated out directly from the reaction
milieu as a crystalline hydrochloride salt (10-HCI) consistently in
70 % yield and with >95 % purity (1-2 % of the amino-amide 8 still
persisted as an impurity).

With the amino-nitrile 10-HCI in hand, we shifted our attention
to identifying a cost-effective and scalable strategy for carrying out
the final step in the synthesis of 1 (Scheme 4). Both 7 and 10 are
stereochemically embellished and contain functional groups sensi-
tive towards acids and bases. Hence, as the first approach, we
chose to activate the carboxylic acid 7 as a pivaloyl mixed anhy-
dride 14 which conveniently reacted with 10-HCI to furnish the
final API 1. Needless to say, the amino-amide impurity 8, present
in 10, also reacted with 14 under the reaction conditions employed
to give 9 (this was confirmed in a separate study shown in
Scheme 4) as the major contaminant in 1.

During our efforts described so far, we were cognizant of the
fact that not being able to obtain the nitrile 10 with very high pur-
ity can potentially compromise its use as a regulatory precursor to
the final API 1. Hence, we decided to address this inherent short-
coming and envisaged the use of T3P as a common reagent to carry
out three transformations in the same pot, namely: (a) amidation
of 7 with 10 to furnish 1, (b) amidation of 7 with the impurity 8
to furnish 9, and (c¢) dehydration of 9, thus formed, to furnish 1.
To our delight, even a sample of the amino-nitrile 10-HCI, contain-
ing 5 % of the amino-amide 8, afforded Nirmatrelvir 1 with ~97 %
purity when reacted with 7 in presence of T3P (Scheme 5).

The foregoing observation indicated that T3P can be success-
fully employed as a reagent to obtain a direct access to the final
API 1 from the carboxamide 9. Additionally, unlike the Burgess
reagent, T3P is well-known for its low toxicity, long shelf-life sta-
bility and easy handling [18]. Initial development studies through
conventional batch chemistry revealed that the dehydration step
was rather slow and required almost 12-16 h to complete even
upon refluxing the reaction mixture.

It was at this juncture that we contemplated the use of contin-
uous flow chemistry as a handy tool for facilitating conventional
reactions under unconventional operating windows [19,20]. A
technique that enables a chemical transformation to be carried
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Scheme 5. Synthesis of Nirmatrelvir 1 from 7 and 10-HCI using T3P.

out in tubes or pipes as opposed to a conventional round-bottom
flask, flow has carved for itself a tremendously attractive niche in
the domain of organic synthesis [21-24]. It presents several advan-
tages such as (a) high surface-to-volume ratio that enhances heat
and mass transfer ultimately resulting in better selectivity of prod-
ucts formed [25], (b) absence of a headspace that promotes sensi-
tive reactions to be easily carried out [26], (c) excellent handling of
exotherms thus resulting in enhancing reaction profile and con-
trolling runaway reactions [27-29], (d) enhanced scale-up tech-
nologies available for large-scale production post-optimization
[30].

For the chemical transformation 9 — 1, application of continu-
ous flow techniques was expected to bring about an improvement
owing to the following reasons: (a) application of a back-pressure
could prevent the liquid stream from evaporating, thus allowing
exploration of temperatures higher than the boiling points of the
solvents present; (b) an increase in the operating temperatures
of the process could bring down the overall time needed for the
conversion, thus assuring a time-efficient mode of synthesis; and
(c) adapting a lab-based flow process into the industrial regime
is easily possible due to various commercially available flow sys-
tems capable of large-scale manufacturing.

Fig. 2 shows the schematic representation of the continuous
flow experimental setup that was employed. A photograph of the
actual experimental setup is included in Fig. S1 of the Supplemen-
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Scheme 4. Synthesis of 1 and 9 from 7 using the mixed-anhydride approach.
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Fig. 2. Schematic representation of the continuous flow setup used for synthesis of 1 via T3P-mediated dehydration of the amide 9.

Table 1

Summary of the continuous flow experimental trials carried out for the T3P-mediated dehydration of 9 to 1.*

Sr. No. Molar equivalents Temp. ResidenceTime HPLC (% Area under the curve)
Amide (9) DIPEA T3P 0 (min) Amide (9) Nitrile (1) = (Others)

1 1 2.5 2 100 30 14 85.69 12.91
2 1 2.5 2 110 15 24.61 65.18 10.21
30 1 2.5 2 100 30 0 89.44 10.56
4 1 2.5 1.5 100 30 13.1 72.42 14.48
5 1 2.5 2 80 30 17.11 69.71 13.18
6 1 2.5 2 110 30 0 87.38 12.62

2 All experiments were performed with 10 volumes of THF. All runs were performed in either 2 mL or 10 mL PTFE coils with Vapourtec [31] V-3 peristaltic pumps and
variable BPR. Purity of the amide employed as input was typically >85 % by HPLC. Yield and purity of crude 1 isolated from the output stream were 60-75 % and >90 %

respectively [typical results from batch experiments, yield: 65-68 %, purity: >90 %].
b performed to check process reproducibility.

tary Information file. A summary of the experimental runs con-
ducted through flow have been compiled in the Table 1. As clearly
indicated in Table 1, a complete conversion of the carboxamide 9 to
Nirmatrelvir 1 could be achieved in flow with a reaction tempera-
ture of 100 °C and a residence time of 30 min (as compared to 12-
16 h in batch) using 2.5 mol equiv. of DIPEA and 2.0 mol equiv. of
T3P. The yield and purity of the crude API isolated from the output
stream were comparable to those obtained by conventional batch
process.

In summary, we have demonstrated a viable strategy for com-
mercial adoption of an alternate and a more convergent synthetic
route to Nirmatrelvir 1 — an important antiviral drug needed in
countering the COVID-19 pandemic. During the course of our
efforts, we have delineated a scalable synthesis and practical
means of isolating the amino-nitrile 10 in a pure form as a crys-
talline hydrochloride salt. This salt 10-HCI afforded a direct access
to Nirmatrelvir 1 via amidation with the carboxylic acid 7 activated
as a pivaloyl mixed anhydride. Using T3P to couple 7 and 10-HCl
had the added benefit of being able to concomitantly convert the
amino-amide 8-HCl (invariably present as an impurity in 10-HCI)
to the carboxamide 9 which was then dehydrated by T3P to 1. This
allowed us to obtain the final API in ~97 % purity even with a sam-
ple of the amino-nitrile 10-HCI, containing 5 % of the amino-amide
8. Subsequently, a continuous flow process was developed for
achieving an efficacious and scalable T3P mediated conversion of
9 to 1. Unlike a batch process that took 12-16 h to complete even
at the reflux temperature of the reaction mixture, the same chem-
ical transformation 9 — 1 could be achieved within just 30 min in
flow without the need to operate under extreme temperature and
pressure regimes. Efforts to obtain a direct access to 1 in flow from
the carboxylic acid 7 and the amino-amide 8 via T3P-mediated

tandem amidation-dehydration are currently underway, and the
results will be communicated soon.
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Appendix A. Supplementary data

Supplementary data (Experimental procedures; characteriza-
tion data of compounds 1, 9, 10-HCI, 12 and 13; and details of
the experimental setup employed in the continuous flow T3P-
mediated dehydration of 9 to 1) to this article can be found online
at https://doi.org/10.1016/j.tetlet.2023.154344.
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