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Abstract—We describe here, the first palladium-mediated tandem C–C bond forming reaction between 3-iodothiophene-2-carbox-
ylic acid and terminal alkynes to afford the unexpected 5-substituted 4-alkynylthieno[2,3-c]pyran-7-ones in good yields.
� 2005 Elsevier Ltd. All rights reserved.
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Isocoumarins1a are of considerable synthetic and phar-
macological interest because of their wide range of activ-
ities1b–d such as antifungal, antimicrobial, phytotoxic and
other effects. The angiogenesis inhibitor NM-3,1e which
belongs to this class is presently undergoing Phase-I clin-
ical trials. On the other hand, the thiophene moiety is
common inmany bioactive agents and drugs2a and is con-
sidered as a bioisostere of the benzene ring.2a Thus, one
can anticipate that replacing the benzene ring of isocoum-
arin with a thiophene ring would afford compounds (i.e.,
thieno[2,3-c]pyran-7-ones) of potential pharmacological
interest.2b However, thienopyranones are a different class
of heterocycles and only a few methods are known for
their synthesis.2c–e Moreover, the synthesis of 4-alkynyl-
thieno[2,3-c]pyran-7-ones has not been reported thus
far. These derivatives are attractive due to the synthetic
potential of C-4 alkynyl fragments for use in library
construction. Therefore, to enrich the chemistry of thi-
ophenes and more importantly, to synthesize a library
of isocoumarins3 for biological screening we became
interested in the synthesis of thieno[2,3-c]pyran-7-ones.

Among the many methods reported for the synthesis of
isocoumarins one widely used process is the Sonogash-
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ira-type coupling followed by electrophilic or transition
metal mediated cyclization of the resulting alkynes pos-
sessing a carboxylate or an equivalent group in proxim-
ity to the triple bond.4 Attractive features of this process
include its versatility and functional group tolerance.
Thus, isocoumarins have been prepared by reacting o-
iodobenzoic acid with terminal alkynes in the presence
of Pd(PPh3)4, Et3N and a stoichiometric amount of
ZnCl2.

5a The use of ZnCl2 in place of CuI5b,c was found
to be responsible for the predominant formation of
isocoumarins over phthalides. Nevertheless, we have
noted that 3-iodothiophene-2-carboxylic acid (1) reacts
smoothly with terminal alkynes in the presence of
PdCl2(PPh3)2–Et3N–CuI as a catalyst system affording
5-substituted 4-alkynylthieno[2,3-c]pyran-7-ones (2) in
good yields (Scheme 1). To the best of our knowledge
this demonstration represents the first example of a
mild, single-step, Pd-catalyzed approach to substituted
thieno[2,3-c]pyran-7-ones.6
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Scheme 1. Pd-catalyzed reaction of 3-iodothiophene-2-carboxylic acid
1 with terminal alkynes.
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Table 1. Pd-mediated synthesis of 5-substituted 4-alkynylthieno[2,3-c]pyran-7-onesa

Entry Alkyne (HC„C–R) Solvent; time (h) Product (2) Yield (%)

2 3

1 –C(CH3)2OH EtOH; 12

S O

O

HO
CH3

CH3

HO
CH3

CH3

2a 

50 24

2 –C(CH3)2OH 1,4-dioxane; 12 2a 30 0
3 –C(CH3)2OH DMA; 12 2a 55 0
4 –C(CH3)2OH DMF; 8 2a 80 0

5 –(CH2)2OH DMF; 12

S O

O

OH

OH

2b 

53 0

6 –(CH2)3OH DMF; 12

S O

O

OH

OH

2c 

61 0

7 –CH(OH)CH3 DMF; 10

S O

O

HO

OH

2d 

82 0

8 –(CH2)3CH3 DMF; 12

S O

O
2e 

65 15

9 –(CH2)5CH3 DMF; 12

S O

O2f

62 35
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Table 1 (continued)

Entry Alkyne (HC„C–R) Solvent; time (h) Product (2) Yield (%)

2 3

10 –C6H5 DMF; 12

S O

O
2g 

57 0

11 –C6H4CH3-p DMF; 12

S O

O

CH3

CH3

2h 

62 0

12 –C6H4C5H11-p DMF; 8

S O

O

2i 

73 0

13 –CH2OC6H5 DMF; 8

S O

O

O

O

2j 

75 0

a All reactions were carried out using 1 (1.0 equiv), terminal alkyne (2.0 equiv), PdCl2(PPh3)2 (0.048 equiv), CuI (0.06 equiv) and Et3N (5 equiv) at
70–80 �C under nitrogen.
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While preparing 5-substituted thieno[2,3-c]pyran-7-ones
(3) under Sonogashira conditions,7 we observed that Pd-
catalyzed coupling of 18a with 2-methyl-3-butyn-2-ol in
ethanol afforded 5-alkylthieno[2,3-c]pyran-7-ones (3a,
R = –C(CH3)2OH, Scheme 1) in 24% yield and the
unexpected 4-(3-hydroxy-3-methylbut-1-ynyl)-5-(1-hy-
droxy-1-methylethyl)thieno[2,3-c]pyran-7-one (2a) in
50% purified yield (2:1 ratio of 2a and 3a) (Table 1, entry
1). Compound 2a was isolated as a light brown gum
(kmax(MeOH) at 312.0, 252.8, 238.4 for 2a versus
360.0, 353.8, 310.4, 282.0, 230.8 for 3a) and was charac-
terized by 1H and 13C NMR and other spectroscopic
methods. The mass spectra showed an intense molecular
ion peak at m/z 293 (M+, 100%) that was higher than
the m/z of 3a [211 (M+)]. In the 1H NMR spectra,
compound 3a demonstrated a signal at d 6.8 due to



Figure 1. X-ray crystal structure of 2b (ORTEP diagram).
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the vinylic proton, which was not observed in the case of
2a. Moreover, 2a gave a signal at d 1.61 accounting for
the four methyl groups.

The spectral data thus identified 2a as an alkyne possess-
ing the thieno[2,3-c]pyran-7-one ring at one end. This
was supported by the molecular structure of 2b (R =
–CH2CH2OH), which was confirmed by X-ray analy-
sis.8b The ORTEP diagram of 2b (Fig. 1) shows a
planar thieno[2,3-c]pyran-7-one core with a disordered
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Scheme 2. A plausible mechanism for Pd-catalyzed formation of 2 and 3.
hydroxyl group due to the alkynyl side chain along with
the other hydroxy group oriented in the opposite direc-
tion. The unexpected formation of 2a thus prompted us
to investigate this reaction in a more systematic manner.

The reaction was originally carried out in ethanol in the
presence of PdCl2(PPh3)2 (0.048 equiv), CuI (0.06 equiv),
Et3N (5.0 equiv) and 2.0 equiv of the terminal alkyne at
75 �C. Keeping the molar ratio of Pd:Cu at 1:1.3, we car-
ried out a series of optimization experiments on the reac-
tion of 1 with 2-methyl-3-butyn-2-ol. We found that
changing the solvent from ethanol to a non-protic sol-
vent such as 1,4-dioxane or dimethylacetamide (DMA)
suppressed the formation of 3a completely (Table 1, en-
tries 2 and 3) and 2a was isolated in 30% and 55% yields,
respectively. The best result was obtained using DMF
where 2a was isolated exclusively in 80% yield (Table 1,
entry 4). In a separate study we carried out this reaction
using a smaller amount of terminal alkyne (1.0 equiv); 2a
was isolated in 28% yield and the reaction did not reach
completion. Both Pd and Cu catalysts played crucial
roles as no reaction was observed when either was omit-
ted. The use of other Pd catalysts, for example,
Pd(PPh3)4, Pd(OAc)2 or PdCl2(dppf)2 was investigated
where 2a was isolated as major product albeit in low
yield (35–40%). Originally, we speculated that the forma-
tion of 2a might first involve the formation of 3a, which
subsequently reacted with another mole of the terminal
alkyne under Pd–Cu catalysis. However, formation of
2a was not observed when 3a was subjected to the same
Pd-catalyzed reaction conditions.

We then tested the optimized reaction conditions9 with
other terminal alkynes (Table 1, entries 5–13). Various
functional groups including aryl, alkyl, hydroxyl, ether,
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etc. present in the terminal alkyne were well tolerated.
Generally, compounds 2 were isolated as the sole prod-
ucts in all cases except when 1-hexyne and 1-octyne were
used (Table 1, entries 8 and 9). The reaction shows very
high regioselectivity as no isomeric thieno[2,3-c]furan-6-
ones resulting from 5-�exo-dig� cyclization were detected
under the reaction conditions studied. This is in sharp
contrast to earlier observations5 where the coupling-
cyclization followed 5-exo-dig ring closure, predomi-
nantly under Pd–Cu catalysis in DMF.

Mechanistically, the reaction seems to proceed via
in situ generation of 3-(1-alkynyl)thiophene-2-carbox-
ylic acid according to the typical Sonogashira pathway
(Scheme 2).5b Once formed this acid then undergoes
intramolecular cyclization aided by the Pd(II) complex4a

or copper salt3 to give 2 or 3. However, formation of 2
clearly suggests that this is a Pd(II)-mediated process
and presumably, proceeds via insertion of the Pd(0)
complex into the acetylenic C–H bond of the terminal
alkyne leading to a Pd(II) intermediate10 that catalyzes
the �6-endo-dig� ring closure via path a or b (Scheme
2). A �5-exo-dig� ring closure, although allowed by Bald-
win�s rule, was not observed in the present case because
of the favourable geometry associated with the 5–6 ring
formation rather than the 5–5 ring.

In summary, a novel catalytic approach to 4-alkynylthi-
eno[2,3-c]pyran-7-ones has been developed through the
coupling of 3-iodothiophene-2-carboxylic acid with ter-
minal alkynes under palladium–copper catalysis. The
process was found to be quite general and highly regio-
selective, placing the alkynyl moiety at the C-4 position
of the thieno[2,3-c]pyran-7-one ring. We are presently
investigating the scope of this novel palladium-catalyzed
transformation.
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